
[Sarwath, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1749-1755]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Alert Aggregation Agent
Asra Sarwath*1, Raafiya Gulmeher2

*1P.G.Student , Department Of Computer Science & Engineering,KBNCE, Gulbarga, Karnataka, India
2Assistant Professor , Department of Computer Science & Engineering, KBNCE, Gulbarga, Karnataka,

India
asra.sarwath2003@gmail.com

Abstract
Intrusion detection technique is important subtask that aggregates alert. Alert aggregation goal is to identify

& to cluster different alert belonging to a specific attack instance which has been initiated by an attacker at a certain
point in time. Meta-alerts may then be the basis for reporting to security experts or for communication within a
distributed intrusion detection system. Alert aggregation which is based on a dynamic, probabilistic model of the
current attack situation, it can be regarded as a data stream version of a maximum likelihood approach for the
estimation of the model parameters. Meta-alerts are generated with a delay of typically only a few seconds after
observing the first alert belonging to a new attack instance. We make the system more efficient in identifying the
intrusion alerts and also we extend this work by sending the Alerts as Message to the Network Administrator who
governs the Network or Intrusion Detection System.

Keywords: Intrusion detection, alert aggregation, generative modeling, data stream algorithm.

 Introduction
Intrusion detection systems are the `burglar

alarms' of the computer security field. IDS usually
focus on detecting attack types, but not on
distinguishing between different attack instances. In
addition, even low rates of false alerts could easily
result in a high total number of false alerts if
thousands of network packets or log file entries are
inspected. As a consequence, the IDS Data Stream
Intrusion Alert Aggregation creates many alerts at a
low level of abstraction. It is extremely difficult for a
human security expert to inspect this flood of alerts,
and decisions that follow from single alerts might be
wrong with a relatively high probability.

Fig 1: illustrates a simple network, which is protected

using IDS.
a “perfect” IDS should be situation-aware[2] in the
sense that at any point in time it should “know” what
is going on in its environment regarding attack
instances (of various types) and attackers. In this
paper, we make an important step toward this goal by
introducing and evaluating a new technique for alert

aggregation. Alerts may originate from low-level IDS
such as those mentioned above, from firewalls (FW),
etc. Alerts that belong to one attack instance must be
clustered together and meta-alerts must be generated
for these clusters. The main goal is to reduce the
amount of alerts substantially without losing any
important information which is necessary to identify
ongoing attack instances.
Our approach has the following distinct properties:

1. It is a generative modeling approach [3]
using probabilistic methods. Assuming that
attack instances can be regarded as random
processes “producing” alerts, we aim at
modeling these processes using approximate
maximum likelihood parameter estimation
techniques. Thus, the beginning as well as
the completion of attack instances can be
detected.

2. It is a data stream approach, i.e., each
observed alert is processed only a few times
[4]. Thus, it can be applied online and under
harsh timing constraints.

Related Work

IDS are optimized to detect attacks with
high accuracy. However, they still have various
disadvantages that have been outlined in a number of

[Sarwath, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1749-1755]

publications and a lot of work has been done to
analyze IDS in order to direct future research (cf. [5],
for instance). Besides others, one drawback is the
large amount of alerts produced. Recent research
focuses on the correlation of alerts from (possibly
multiple) IDS. If not stated otherwise, all approaches
outlined in the following present either online
algorithms or—as we see it—can easily be extended
to an online version. Probably, the most
comprehensive approach to alert correlation is
introduced in [6]. One step in the presented
correlation approach is attack thread reconstruction,
which can be seen as a kind of attack instance
recognition. No clustering algorithm is used, but a
strict sorting of alerts within a temporal window of
fixed length according to the source, destination, and
attack classification (attack type). In [7], a similar
approach is used to eliminate duplicates, i.e., alerts
that share the same quadruple of source and
destination address as well as source and destination
port. In addition, alerts are aggregated (online) into
predefined clusters (so-called situations) in order to
provide a more condensed view of the current attack
situation. The definition of such situations is also
used in [8] to cluster alerts. In [9], alert clustering is
used to group alerts that belong to the same attack
occurrence. Even though called clustering, there is no
clustering algorithm in a classic sense. The alerts
from one (or possibly several) IDS are stored in a
relational database and a similarity relation—which
is based on expert rules—is used to group similar
alerts together. Two alerts are defined to be similar,
for instance, if both occur within a fixed time
window and their source and target match exactly. As
already mentioned, these approaches are likely to fail
under real-life conditions with imperfect classifiers
(i.e., low-level IDS) with false alerts or wrongly
adjusted time windows.

In [15], three different approaches are
presented to fuse alerts. The first, quite simple one
groups alerts according to their source IP address
only. The other two approaches are based on different
supervised learning techniques. Besides a basic least-
squares error approach, multilayer perceptrons, radial
basis function networks, and decision trees are used
to decide whether to fuse a new alert with an already
existing meta-alert (called scenario) or not. Due to
the supervised nature, labeled training data need to be
generated which could be quite difficult in case of
various attack instances.

An offline clustering solution based on the
CURE algorithm is presented. The solution is
restricted to numerical attributes. In addition, the
number of clusters must be set manually. This is
problematic, as in fact it assumes that the security
expert has knowledge about the actual number of

ongoing attack instances. The alert clustering solution
described in [11] is more related to ours. A link-
based clustering approach is used to repeatedly fuse
alerts into more generalized ones. The intention is to
discover the reasons for the existence of the majority
of alerts, the so called root causes, and to eliminate
them subsequently. An attack instance in our sense
can also be seen as a kind of root cause, but in [11]
root causes are regarded as “generally persistent”
which does not hold for attack instances that occur
only within a limited time window. Furthermore,
only root causes that are responsible for a majority of
alerts are of interest and the attribute-oriented
induction algorithm is forced “to find large clusters”
as the alert load can thus be reduced at most. Attack
instances that result in a small number of alerts (such
as PHF or FFB) are likely to be ignored completely.
The main difference to our approach is that the
algorithm can only be used in an offline setting and is
intended to analyze historical alert logs. In contrast,
we use an online approach to model the current attack
situation. The alert clustering approach described in
[12] is based on [11] but aims at reducing the false
positive rate. The created cluster structure is used as
a filter to reduce the amount of reated alerts. Those
alerts that are similar to already known false
positives are kept back, whereas alerts that are
considered to be legitimate (i.e., dissimilar to all
known false positives) are reported and not further
aggregated. The same idea—but based on a different
offline clustering algorithm—is presented in [21].

Online Alert Aggregation

To outline the preconditions and objectives
of alert aggregation, we start with a short sketch of
our intrusion framework. Then, we briefly describe
the generation of alerts and the alert format. We
continue with a new clustering algorithm for offline
alert aggregation which is basically a parameter
estimation technique for the probabilistic model.
After that, we extend this offline method to an
algorithm for data stream clustering which can be
applied to online alert aggregation. Finally, we make
some remarks on the generation of meta-alerts
A.Collaborating Intrusion Detection Agents

Fig.2 Architecture of an intrusion detection agent.

[Sarwath, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1749-1755]

Fig. 2 outlines the layered architecture of an
ID agent:The sensor layer provides the interface to
the network and the host on which the agent resides.
Sensors acquire raw data from both the network and
the host, filter incoming data, and extract interesting
and potentially valuable (e.g., statistical) information
which is needed to construct an appropriate event. At
the detection layer, different detectors, e.g.,
classifiers trained with machine learning techniques
such as support vector machines (SVM) or
conventional rule-based systems such as Snort [24],
assess these events and search for known attack
signatures (misuse detection) and suspicious behavior
(anomaly detection). In case of attack suspicion, they
create alerts which are then forwarded to the alert
processing layer. Alerts may also be produced by FW
or the like. At the alert processing layer, the alert
aggregation module has to combine alerts that are
assumed to belong to a specific attack instance. Thus,
so called meta-alerts are generated. Meta-alerts are
used or enhanced in various ways, e.g., scenario
detection or decentralized alert correlation. An
important task of the reaction layer is reporting.

The overall architecture of the distributed
intrusion detection system and a framework for large-
scale simulations are described in [25], [26] in more
detail.

In our layered ID agent architecture, each
layer assesses, filters, and/or aggregates information
produced by a lower layer. Thus, relevant
information gets more and more condensed and
certain, and, therefore, also more valuable. We aim at
realizing each layer in a way such that the recall of
the applied techniques is very high, possibly at the
cost of a slightly poorer precision [27].
B. Alert Generation and Format

In this section, we make some comments on
the information contained in alerts, the objects that
must be aggregated, and on their format. At the
sensor layer,sensors determine the values of attributes
that are used as input for the detectors as well as for
the alert clustering module. Attributes in an event that
are independent of a particular attack instance can be
used for classification at the detection layer.
Attributes that are (or might be) dependent on the
attack instance can be used in an alert aggregation
process to distinguish different attack instances. A
perfect partition into dependent and independent
attributes, however, cannot be made. Some are
clearly dependent (such as the source IP address
which can identify the attacker), some are clearly
independent such as the destination port which
usually is 80 in case of web based attacks), and lots
are both (such as the destination port which can be a
hint to the attacker’s actual target service as well as
an attack tool specifically designed to target a

particular service only). In addition to the attributes
produced by the sensors, alert aggregation is based on
additional attributes generated by the detectors.
Examples are the estimated type of the attack
instance that led to the generation of the alert (e.g.,
SQL injection, buffer overflow, or denial of service),
and the degree of uncertainty associated with that
estimate.
C. Offline Alert Aggregation

In this section, we introduce an offline
algorithm for alert aggregation which will be
extended to a data stream algorithm for online
aggregation in Assume that a host with an ID agent
is exposed to a certain intrusion situation. One or
several attackers launch several attack instances
belonging to various attack types. The attack
instances each cause a number of alerts with various
attribute values. The task of the alert aggregation
module is now to estimate the assignment to
instances by using the unlabeled observations only
and by analyzing the cluster structure in the attribute
space. That is, it has to reconstruct the attack
situation. Then, meta-alerts can be generated that are
basically an abstract description of the cluster of
alerts assumed to originate from one attack instance.
Thus, the amount of data is reduced substantially
without losing important information.There may be
different potentially problematic situations:

1. False alerts are not recognized as such and
wrongly assigned to clusters: This situation
is acceptable as long as the number of false
alerts is comparably low.

2. True alerts are wrongly assigned to clusters:
This situation is not really problematic as
long as the majority of alerts belonging to
that cluster is correctly assigned. Then, no
attack instance is missed.

3. Clusters are wrongly split: This situation is
undesired but clearly unproblematic as it
leads to redundant meta-alerts only. Only
the data reduction rate is lower, no attack
instance is missed.

4. Several clusters are wrongly combined into
one:This situation is definitely problematic
as attack instances may be missed.
EM(Expectation Maximization) procedure

for our attack situation model is shown in Algorithm
1. It iteratively maximizes the likelihood with two
alternating computation steps: E (expectation) and M
maximization). The E step assigns the alerts to
components—resulting in a partition of the set A
with J clusters—and the M step optimizes the
parameters of the mixture model.
Some additional remarks must be made:

Initialization of model parameters: The aim of the

[Sarwath, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1749-1755]

initialization is to find good initial values. Instead of
using a random initialization which results in higher
runtimes and sub-optimal solutions, we use a
heuristic which we have successfully applied to the
training of radial basis function neural networks [31].

Hard assignment of alerts to components:
More general EM algorithms make a gradual
assignment of alerts to components in the E step (cf.
responsibilities in [3]). In practical applications, a
hard assignment reduces the runtimes significantly at
the cost of slightly worse solutions in some
situations. In our case, this is acceptable as we do not
want to find the optimal model parameters at the end,
but to generate the optimal set of meta-alerts.

Stopping criterion. An EM algorithm
guarantees that the set of parameters is improved in
each step. In addition, due to the hard assignment of
alerts, there exists a limited number of possible
assignments. For the sake of simplicity, however, we
usually run the algorithm for a fixed number of
iterations.

Fixed mixing coefficients. One of the main
difficulties in alert aggregation is the wide range of
possible cluster sizes. There are clusters that contain
thousands of alerts, but there are also clusters that
consist of a few alerts only. For instance, a Neptune
attack instance may result in 200,000 alerts whereas a
PHF attack instance may consist of only five alerts
[32]. Thus, in contrast to a more general EM
approach, it is important to fix the mixing
coefficients.Otherwise, if the mixing coefficients
were estimated from the observed samples, the EM
algorithm would focus on the optimization of the
parameters of “heavy” components while neglecting
the “light” ones.
D. Data Stream Alert Aggregation

In this section, we describe how the offline
approach is extended to an online approach working
for dynamic attack situations.
Assume that in the environment observed by an ID
agent attackers initiate new attack instances that
cause alerts for a certain time interval until this attack
instance is completed.

1. Component adaption: Alerts associated with
already recognized attack instances must be
identified as such and assigned to already
existing clusters while adapting the
respective component parameters.

2. Component creation: The occurrence of new

attack instances must be stated. New
components must be parameterized
accordingly.

3. Component deletion: The completion of
attack instances must be detected and the

respective components must be deleted from
the mode

Algorithm 2 describes the online alert aggregation. If
a new alert is observed we first have to decide
whether a first component has to be created. In this
case, we initialize its parameters with information
taken from this alert. Random, small values are
added, for example, to prevent any subsequent
optimization steps from running into singularities of
the respective likelihood function [3]. Otherwise, we
have to decide whether the alert has to be associated
with an existing component or not, i.e., whether we
believe that it belongs to an ongoing attack instance
or not. Provisionally, we assign the alert to the most
likely component (E step) and optimize the
parameters of this component (M step).

This procedure is initiated either when the
temporal spread of the buffer content is too large or
when the content is no longer homogeneous in the
sense that we assume that another new attack
instance may have been initiated:

1. Temporal spread: As the rate of incoming
alerts depends on the current attack
situation, it changes heavily over time
ranging from thousands of alerts per minute
to only a few alerts per hour. Thus, to keep
the response time short, we have to take into
account the temporal spread of the buffer
content.
2. Homogeneity: The goal is to ensure that
only alerts that are similar to each other are
stored in the buffer. Thus, it is possible that

[Sarwath, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1749-1755]

the novelty handling conducts—for temporal
performance reasons.

In order to reduce the runtime of this
algorithm further,we may reduce the number of alerts
that have to be processed by means of an appropriate
subsampling.
 Algorithm 3 describes the novelty handling
itself. Basically, to adapt the overall model, we run
the offline aggregation algorithm several times with
different possible component numbers to chose the
optimal number. However, due to the homogeneity of
the buffer, we may]
E. Meta-Alert Generation and Format

With the creation of a new component, an
appropriate metaalert that represents the information
about the component in an abstract way is created.
Every time a new alert is added to a component, the
corresponding meta-alert is updated incrementally,
too. That is, the meta-alert “evolves” with the
component. Meta-alerts may be the basis for a whole
set further tasks . Sequences of meta-alerts may be
investigated further in order to detect more complex
attack scenarios(e.g., by means of hidden Markov
models).Meta-alerts may be exchanged with other ID
agents in order to detect distributed attacks such as
one-to many attacks. . Based on the information
stored in the meta-alerts, reports may be generated to
inform a human security expert about the ongoing
attack situation. Meta-alerts could be used at various
points in time from the initial creation until the
deletion of the corresponding component (or even
later). For instance, reports could be created
immediately after the creation of the component or—
which could be more preferable in some cases—a
sequence of updated reports could be created in
regular time intervals. Another example is the

exchange of metaalerts between ID agents: Due to
high communication costs,meta-alerts could be
exchanged based on the evaluation of their
interestingness.

Experimental Results

In the following, the results for the alert
aggregation are presented. For all experiments, the
same parameter settings are used. We set the
threshold _ that decides whether to add a new alert to
an existing component or not to five percent, and the
value for the threshold _ that specifies the allowed
temporal spread of the alert buffer to 180 seconds. _
was set that low value in order to ensure that even a
quite small degrade of the cluster quality, which
could indicate a new attack instance, results in a new
component.

First of all, it must be stated there is an
operation point of the SVM at the detection layer (OP
1) where we do not miss any attack instances at all (at
least in addition to those already missed at the
detection layer). The reduction rate is with 99.87
percent extremely high, and the detection delay is
only 5.41 s in the worst case (d100%). Average and
worst case runtimes are very good, too. All OP will
now be analyzed in much more detail. All attack
instances for which the detector produces at least a
single alert are detected in the idealized case and with
OP 1 and OP 2. Choosing another OP, the rate of
detected instances drops to 98.04 percent (OP 3) and
99.02 percent (OP 4). In OP 3, a FORMAT instance
and a MULTIHOP instance are missed. In OP 4, only
the FORMAT instance could not be detected. A
further analysis identified the following reasons:
 The main reason in the case of the FORMAT
instance is the small number of only four alerts.
Those alerts are created by the detector layer for all
OP, i.e., there is obviously no benefit from choosing
an OP with higher FPR. By increasing the FPR, the
true FORMAT alerts are erroneously merged with
false alerts into one cluster. Hence, as the false alerts
easily outnumber the four true FORMAT alerts
within this cluster, the FORMAT instance gets lost. .
For the MULTIHOP instance, for which we have 19
alerts, the situation is more complex. The instance
is only missed in OP 3 and not in OP 4. In OP 3, the
downside of a higher FPR outweighs the benefit of a
higher TPR—the MULTIHOP alerts are merged with
a large number of false alerts. Further increasing the
FPR (OP 4) leads to more false alerts as well, but, in
this case, also to a further split of clusters such that
the false alerts and the MULTIHOP alerts are placed
into separate clusters. Next, we analyze the number
of meta-alerts MA and the reduction rate r. In the
idealized case, 324 meta-alerts are created. Compared

[Sarwath, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1749-1755]

to the about 1.6 million alerts, we get a reduction rate
of 99.98 percent, which is a reduction of almost three
orders of magnitude. Unfortunately, with exception
of the first of seven weeks, it was not possible to
achieve the ideal case with exactly one meta-alert for
every attack instance. Basically, there are four
reasons:

Distinguishable steps of an attack type:
Often, a split of attack instances into more meta-
alerts is caused by the nature of the attacks
themselves. Actually, many attack types consist of
different, clearly distinguishable steps. As an
example, the FTP-WRITE attack exhibits three such
steps: an FTP login on port 21, an FTP data transfer
on port 20, and a remote login on port 513. Thus, a
split into three related meta-alerts is quite natural.
Subsequent tasks at the alert processing layer are
supposed to handle such multistep attack scenarios
(cf. Fig. 1).

Several independent attackers: In the
DARPA data set, some attack instances are labeled as
a single attack instance although they are in fact
comprised of the actions of several independent
attackers.
Long attack duration: Attack instances with a long
duration are often split into several meta-alerts.
Typical examples are slow or hidden port scans or
(distributed) denial of service attacks which can last
several hours.

Bidirectionalcommunication:TCP/IP-based
communication between two hosts results in packets
transmitted in both directions. If the detector layer
produces alerts for both directions (e.g., due to
malicious packets), the source and destination IP
address are swapped, which in the end results in two
meta-alerts. This problem could be solved with an
appropriate preprocessing step.

Conclusion

The experiments demonstrated the broad
applicability of the proposed online alert aggregation
approach. We analyzed three different data sets and
showed that machine-learning-based detectors,
conventional signaturebased detectors, and even
firewalls can be used as alert generators. In all cases,
the amount of data could be reduced
substantially.especially clusters that are wrongly
split—the instance detection rate is very high: None
or only very few attack instances were missed.
Runtime and component creation delay are well
suited for an online application.

References
[1] S. Axelsson, “Intrusion Detection Systems:

A Survey and Taxonomy,” Technical Report
99-15, Dept. of Computer Eng., Chalmers
Univ. of Technology, 2000.

[2] M.R. Endsley, “Theoretical Underpinnings
of Situation Awareness: A Critical Review,”
Situation Awareness Analysis and
Measurement, M.R. Endsley and D.J.
Garland, eds., chapter 1, pp. 3-32,
Lawrence Erlbaum

[3] C.M. Bishop, Pattern Recognition and
Machine Learning. Springer, 2006.

[4] M.R. Henzinger, P. Raghavan, and S.
Rajagopalan, Computing on Data Streams.
Am. Math. Soc., 1999.

[5] A. Allen, “Intrusion Detection Systems:
Perspective,” Technical Report DPRO-
95367, Gartner, Inc., 2003.

[6] F. Valeur, G. Vigna, C. Kru¨ gel, and R.A.
Kemmerer, “A Comprehensive Approach to
Intrusion Detection Alert Correlation,”
IEEE Trans. Dependable and Secure
Computing, vol. 1, no. 3, pp. 146-169, July-
Sept. 2004.

[7] H. Debar and A. Wespi, “Aggregation and
Correlation of Intrusion-Detection Alerts,”
Recent Advances in Intrusion Detection, W.
Lee, L. Me, and A. Wespi, eds., pp. 85-103,
Springer, 2001.

[8] D. Li, Z. Li, and J. Ma, “Processing
Intrusion Detection Alerts in Large-Scale
Network,” Proc. Int’l Symp. Electronic
Commerce and Security, pp. 545-548, 2008.

[9] F. Cuppens, “Managing Alerts in a Multi-
Intrusion Detection Environment,” Proc.
17th Ann. Computer Security Applications
Conf. (ACSAC ’01), pp. 22-31, 2001.

[10] A. Valdes and K. Skinner, “Probabilistic
Alert Correlation,” Recent Advances in
Intrusion Detection, W. Lee, L. Me, and A.
Wespi, eds. pp. 54-68, Springer, 2001.

[11] K. Julisch, “Using Root Cause Analysis to
Handle Intrusion Detection Alarms,” PhD
dissertation, Universita¨ t Dortmund, 2003.

[12] T. Pietraszek, “Alert Classification to
Reduce False Positives in Intrusion
Detection,” PhD dissertation, Universita¨ t
Freiburg, 2006.

[13] F. Autrel and F. Cuppens, “Using an
Intrusion Detection Alert Similarity
Operator to Aggregate and Fuse Alerts,”
Proc. Fourth Conf. Security and Network
Architectures, pp. 312-322, 2005

[Sarwath, 3(3): March, 2014] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[1749-1755]

[14] G. Giacinto, R. Perdisci, and F. Roli,
“Alarm Clustering for Intrusion Detection
Systems in Computer Networks,” Machine
Learning and Data Mining in Pattern
Recognition, P. Perner and A. Imiya, eds.
pp. 184-193, Springer, 2005.

[15] O. Dain and R. Cunningham, “Fusing a
Heterogeneous Alert Stream into
Scenarios,” Proc. 2001 ACM Workshop
Data Mining for Security Applications, pp.
1-13, 2001.

